Wednesday, June 11, 2014

THEORY OF COMPUTER SCIENCE (TCS) DECEMBER 2013 COMPUTER SCIENCE SEMESTER 5

THEORY OF COMPUTER SCIENCE (TCS) DECEMBER 2013  COMPUTER SCIENCE SEMESTER 5

Con. 7047-13.                                                                                                       LJ - 11377
                                                             (3 Hours)                                         [Total Marks : 100]

N. B. : (1) Question No. 1 is compulsory.
           (2) Attempt any four questions from remaining six question.
           (3) Assumptions made should be clearly stated.
           (4) Figure to the right indicate full marks.

1. (a)Define with examples Moore and Mealy machine5
    (b)Find the equivalent DFA accepting the regular language defined by right linear5
grammer given as:-
              S → aA|bB
              A → aA|bC|a
              B → aB|b
              C → bB
    (c)State and prove pumping Lemma theorm for regular language.5
    (d)Differentiate between Deterministic PDA and Non-deterministic PDA.5

2. (a)

Design a finite state machine to determine whether a ternary number base 3 is

10
divisible by 5. [Hint : ∑ = {0,1,2}]
    (b)Design a Mealy machone for the language {0+1)* (00+11) and convert it to a10
Moore machine.

3. (a)

Convert the following NFA with € moves to DFA :-

10


    (b)Let G be the grammer. G = {(S, X), {a,b}, P, S} where productions are :-10
S → aSX|b
X → Xb|a
Find:- {i} Leftmost derivation.{ii} Rightmost derivation and
         {iii} Parse tree for the string "aababa".

4. (a)Design turing machine for the language L={anbn|n>=110
    (b)Design a turing machine to compare the binary number m and n such that if10


5. (a)
(m>n) output is G, if *(m<n) output is L and when (m=N) output is E.

List and explain decision properties of regular language.


10
Explain the test for checking emptiness of a regular language.
    (b)Construct left linear and right linear grammer for the regular expression :-10
                                    (((01 + 10)* 11)*00)*

6. (a)

Construct a PDA equivalent to following grammar:-

10
                  S → oBB
                  B → OS|IS|O
and show the acceptance of 010 by the PDA.
(b)Reduce the folowing grammer to Greibach Normal form.5
(i) S → AB
    A → BSB|BB|b
    B → a
(ii) S → 01S|015
     S → 10S|10
     S → 00|˄

7.

Write short notes on (any four) :-

20
(a) Post Correspondence Problem
(b) Chomsky Hierarchy
(c) Universal turing machine
(d) Recursive and Recursively emurable language
(e) Classes of complexity

No comments:

Post a Comment