Discrete Structures (DS) |
||||||||||||||||||||||
AN-2503 |
||||||||||||||||||||||
N.B: | (1) | Question no.1 is compulsory. | ||||||||||||||||||||
(2) | Attempt any four questions out of remaining six questions. | |||||||||||||||||||||
(3) | Assumption made should be clearly stated. | |||||||||||||||||||||
(4) | Figures to the right indicate full marks. | |||||||||||||||||||||
1. | (a) | Use mathematical induction to prove the following inequality n<2" for all positive integers n. | 04 | |||||||||||||||||||
(b) | Define a pigeonhole principle. Show that if seven colours are used to paint 50 bicycles, at least 8 bicycles will be of same colour. |
04 | ||||||||||||||||||||
(c) | What is an universal and existential quantifier? | 04 | ||||||||||||||||||||
(d) | Define the following terms with the example. (i) Disjoint set (iii) Partial order relation (ii) Symmetric difference (iv) Antisymmetric realtion. |
04 | ||||||||||||||||||||
(e) | How many numbers must be selected from the set {1, 2, 3, 4, 5, 6} to Guarantee that at least one pair of these numbers add up to 7? | 04 | ||||||||||||||||||||
2. | (a) | Prove that if x is a rational number and y is an irrational number, than x + y is an irrational number. | 05 | |||||||||||||||||||
(b) | Define following -- Power Set, Surjective and Injective function | 05 | ||||||||||||||||||||
(c) | Is a graph a planner graph? |
05 | ||||||||||||||||||||
(d) | how many friends must you have to guarantee that at least five of them will have birthdays in same month? | 05 | ||||||||||||||||||||
3. | (a) | Let A = {a, b, c, d} and x be a relation on A whose
matrix is
Prove that R is partial order. Draw Hasse diagram of R. |
10 | |||||||||||||||||||
(b) | (i) Define group, monoid, semigroup (ii) Converse of statement is given. Write inverse and contra positive of statement " If i came early then i can get a car" |
05 | ||||||||||||||||||||
4. | (a) | Write Prims Algorithm. Apply it to following graph. |
10 | |||||||||||||||||||
(b) | (i) Let A = {1, 2, 3, 4, 5}, P={{1,2} {3}, {4,5}}
find equivalence relation determined by P and draw its diagraph. (ii) Check whether relation is reflexive, irrreflexive, symmetric, anti symmetric, transitive. R1 = {(1,1), (1,2), (2,1),(2,2),(3,3),(4,3),(3,4),(4,4)} R2 = {(1,3), (1,1), (3,1),(1,2),(3,3),(4,4)} |
05 | ||||||||||||||||||||
5. | (a) | Prove that the set G = {1,2,3,4,5,6} is a Finite Abelian group of order 6 with respect to multiplication modulo7. | 10 | |||||||||||||||||||
(b) | (i) Find out Eular path and Eular
ckt for the graph |
05 | ||||||||||||||||||||
(ii) Find out Hamiltonian path and
Hamiltonian cycle. |
05 | |||||||||||||||||||||
6. | (a) | (i) Show that (2,5) encoding function
e: B2 → B5 defined by
is a group code. |
05 | |||||||||||||||||||
(ii) R={0,2,4,6,8}. Show that R is commutative ring under addition and multiplication modulo 10. Verify whether it is field or not. | 05 | |||||||||||||||||||||
(b) | (i) Let L be the bounded distributive lattice. Prove that if complement exist then it is unique. |
05 | ||||||||||||||||||||
(ii) give the exponential generating functions
for the sequences given below (i) { 1, 1. 1,.............................} (ii) { 0,1,0,-1,0,1,0-1,.............} |
05 | |||||||||||||||||||||
7. | (a) | In any Ring ( R + .) prove that (i) The zero element z is unique. (ii) The additive inverse of each ring element is unique. |
10 | |||||||||||||||||||
(b) | (i) Let m = 2, n = 5 and
Determine the group code eH : B2 → B5. |
05 | ||||||||||||||||||||
(ii) Consider the (3,5) group
encoding Function e : e: B2 → B5 defined by
Decode the following words relative to a maximum likelihood
decoding function |
Friday, May 23, 2014
Discrete Structures (DS) Semester 3 (Revised Course) (3 Hours) May 2010
Posted by
B.E. Computers, IT Notes/Solved Question papers Mumbai - Free call 022-66752917
at
1:08 AM
Labels:
be engineering,
BE IT 3 semester,
BE IT Information Technology,
BE IT mumbai university,
BE IT Solved papers,
Discrete Structures,
May 2010,
Mumbai university Papers,
Mumbai university Questions papers
Location:
Mulund West, Mumbai, Maharashtra, India
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment