Digital Signal and Image Processing (DSIP)
Semester 7 (3 Hours) December 2011 |
|||||||||||||||||||||
MP-5617
[Total Marks : 100] |
|||||||||||||||||||||
N.B: | (1) | Question no 1 is compulsory. | |||||||||||||||||||
(2) | Attempt any four question out of remaining six questions. | ||||||||||||||||||||
(3) | Figures the right indicate full marks. | ||||||||||||||||||||
(4) | Answer to the questions should be grouped and written together. | ||||||||||||||||||||
(5) | Assume any suitable data wherever required but justify the same. | ||||||||||||||||||||
1. | Justify / contradict following stataments. | ||||||||||||||||||||
(a) | If the energy of the signal is finite its power is zero. | 05 | |||||||||||||||||||
(b) | laplacian is better than gradient for detection of edges. | 05 | |||||||||||||||||||
(c) | Walsh transform is nothing but sequence ordered Hadmard transform matrix | 05 | |||||||||||||||||||
(d) | All image compression techniques are invertible. | 05 | |||||||||||||||||||
2. | (a) |
Find the following sequences are periodic or not. If yes find the
fundamental time period. (i) x1)(n) = e∫(n/2)n (ii) X2 (n) = 3 sin (1/8)n |
10 | ||||||||||||||||||
(b) | Obtain linear convolution of two discrete time signals
as below x (n) = u (n) h(n) = an u(n), a < 1 Show that 1-a n+3/1 - a |
10 | |||||||||||||||||||
3. | (a) |
Find cross-correction between given signals x(n) = {1,2,0,1} ⇑ y(n) = {4,3,2,1} ⇑ |
05 | ||||||||||||||||||
(b) | Find z-transform of x(n) and draw its ROC x(n) = [0.5n sin (Πn/4]u(n) |
10 | |||||||||||||||||||
(c) | Determine auto-correction of the following signal x(n)
= {1, 3, 1, 1} |
05 | |||||||||||||||||||
4. | (a) |
Using 4 point FFT algorithm, calculate 2-D DFT of
|
10 | ||||||||||||||||||
(b) | Write 8x8 Hadmard transform matrix and its signal flow
graph. Using the Butterfly diagram, compute Hadmard transform for x(n) = {1, 2, 3, 4, 1, 2, 1, 2} |
10 | |||||||||||||||||||
5. | (a) | Perform histogram equalization and draw new
equalized histogram of the following image data.
| 10 | ||||||||||||||||||
(b) | What is image segmentation? Explain the
following methods of image segmentation. (i) Region growing (ii) Region splitting (iii) Thresholding |
10 | |||||||||||||||||||
6. | (a) | What are the different types of redundancies in digital image? Explain in detail. | 10 | ||||||||||||||||||
(b) | For the 3 bit 4x4 size image perform following
operations. (i) Thresholding T = 4 (ii) Intensity level slicing with background, r1= 2 and r2 = 5 (iii) Bit plane slicing for MSB and LSB planes (iv) Negation
|
10 | |||||||||||||||||||
7. | write notes on ( any four) :- | 20 | |||||||||||||||||||
(a) | Discrete Cosine transform | ||||||||||||||||||||
(b) | Wiener filter | ||||||||||||||||||||
(c) | Difference between Low-pass filter and Median filter | ||||||||||||||||||||
(d) | Hough transform | ||||||||||||||||||||
(e) | Homomorphic filter | ||||||||||||||||||||
(f) | 4, 8, m correctively of image pixels |
Sunday, July 6, 2014
Digital Signal and Image Processing (DSIP) Semester 7 (3 Hours) December 2011
Posted by
B.E. Computers, IT Notes/Solved Question papers Mumbai - Free call 022-66752917
at
9:36 PM
Labels:
B.E. Computer Science (CS),
BE IT Information Technology,
BE IT mumbai university,
December 2011,
Digital Signal and Image Processing,
Mumbai university Papers,
Mumbai university Questions papers,
Semester 7
Location:
Mulund West, Mumbai, Maharashtra, India
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment