Computer Simulation and Modeling (CSM)
Semester 7 (3 Hours) December 2007 |
|||||||||||||||||||||||||
N.B: | (1) | Question no 1 is compulsory. | |||||||||||||||||||||||
(2) | Attempt any four question out of remaining six questions. | ||||||||||||||||||||||||
1. | (a) | Elaborate the steps in simulation study. Why is it necessary to have program and process documentation? | 10 | ||||||||||||||||||||||
(b) | Discuss simulation application in any one of the
following system : (i) Check-out counter at supermarket (ii) Banking system (iii) Passenger flow analysis in an Airport terminal. |
10 | |||||||||||||||||||||||
2. | (a) |
Define Event, Event notice, Event list, Activity, Delay and Clock. What is boot strapping? Compare event scheduling, process interaction and activity scanning algorithms. |
12 | ||||||||||||||||||||||
(b) | Give the input parameters, simulation variable, output
statistics for the queueing system. Calculate the output statistics for
the queueing system whose interarrival and service times for ten
arrivals are given below :
|
08 | |||||||||||||||||||||||
3. | What are the costs associated
with inventory system ? Describe the inventory system when - |
20 | |||||||||||||||||||||||
(a) | Lead time is zero | ||||||||||||||||||||||||
(b) | Lead time is independent of demand. | ||||||||||||||||||||||||
(c) | Lead time is dependent on demand. | ||||||||||||||||||||||||
4. | (a) | State the conservation equation. Discuss the long-run measure of performance of the queueing system, Vilz., Time average Number in system L and Average time spent in system per customer, W. | 10 | ||||||||||||||||||||||
(b) | Give the equation for steady state parameters of M/G1 queue and derive M/M/1 from M/G/1. | 10 | |||||||||||||||||||||||
5. | (a) | How would you generate random numbers to
test the reliability of a system? State the hypothesis for testing the property of random numbers. What do you understand by level of significance? | 10 | ||||||||||||||||||||||
(b) | By using lnverte Transform Techanique which
of the distributions random variates can be generated? Develop a random-variate generated for a random variable X with the p.d.f.
|
10 | |||||||||||||||||||||||
6. | (a) | Suggest a distribution for the following in the computer
assembly shop : (i) Number of defective chips found in a lot of n chips. (ii) Number of computer chips that we must inspect to find 5 defective chips. (iii) Time to assemble a computer which is the sum of the times required for each assembly operation. (iv) Time to failure for a disk drive. (v) If the mimimum, most-likely and maximum time required to test a product is known Explain quintile plot and state its use. |
10 | ||||||||||||||||||||||
(b) | What do you understand by model verification and validation ? How would you validate input-output transformation of a model? | 10 | |||||||||||||||||||||||
7. | (a) | State the effect of initialization bias in steady state simulation and how can the effect be reduced. | 10 | ||||||||||||||||||||||
(b) | Draw the block diagram of any case study in Manufacturing and Materials Handling simulation. Suggest performance measures. | 10 |
Wednesday, July 9, 2014
Computer Simulation and Modeling (CSM) Semester 7 (3 Hours) December 2007
Posted by
B.E. Computers, IT Notes/Solved Question papers Mumbai - Free call 022-66752917
at
3:04 AM
Labels:
BE IT Information Technology,
BE IT mumbai university,
BE IT Solved papers,
Computer Simulation and Modeling,
December 2007,
mumbai university,
Mumbai university Papers,
Semester 7
Location:
Mulund West, Mumbai, Maharashtra, India
Subscribe to:
Post Comments (Atom)
Hey do you sell notes..msg me at jainprachip4u@gmail.com
ReplyDelete